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Ehe New Aork Times

Slack Restores Service After Starting
2021 With Outage

The company apologized for the disruptions, which lasted for a
few hours as users returned to work after the holidays.
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Blog post: bit.ly/ny-outage 202 ]
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Incidents:
e Pressure to fix ASAP
e Usually lots of people
collaborating
e No distractions
e Mitigations can often get us

back on the air, no need to
understand causal
mechanism

Issues:

e Time pressure is less

e Usually a smaller team or
individual responsible for
investigating

e Lots of distractions

e Understanding causal
mechanism is critical to
fixing or preventing
recurrence



Troubleshooting versus Debugging
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Troubleshooting Scenarios

Something is broken or misbehaving

Something is slow

Something is intermittently broken

Something is intermittently slow

Some subset of requests (or other work) are slow
or broken

Unexplained high resource usage

Some kind of other unexplained behaviour




A troubleshooting story

e Small organisation, with a two-person
DevOps team and several devs

e Software in Java and JS, running on a cloud
provider

e Customers start to notice performance
problems and report that the APl seems to
be browning out regularly




A troubleshooting story: DevOps investigate

e At this point the DevOps team are assigned
to deal with the issue

e They check some consoles and find that
the API service has been going unhealthy
and being restarted after failing
healthchecks, most days around peak time

e This has started a couple of months
previously and was ongoing




A troubleshooting
story: it must bhe
the DB!

e Service doesn’t have much in the way of
metrics or tracing, none of these fancy
newfangled observability technologies
It has logs

e The logs don’t show anything interesting
though

e But the only dependency this service has is
the DB, so it must be slow DB, surely?




A troubleshooting story: DB red
herring

There was already a lot of concern around the DB in
the org, so it was top of mind to improve DB
performance

DB consultant hired to optimise queries and indexes
DB instances upscaled

... and no improvement at all

DB metrics all look very quiet, no evidence of DB
performance problems there




A troubleshooting story: another red herring

e Since the DB story has not proven fruitful, the next thing
was to look at any changes that happened around time
problem manifested

e Turns out around this time the app was moved from
running directly on VM to a container service
Maybe this is the problem! (although nobody sees how)
But after 3 months, it is hard to revert back
Should we invest the work in reverting, or work more on
the DB query optimisation, or work on adding more
observability, or something else?




This team was stuck

e They do not know how to move forward
effectively

e They have some theories about possible causes,
but not really any good evidence for any of them

e All they really know at this point is that their API
service is freezing periodically and being
restarted, and that this is causing customer pain

e Issue is owned by DevOps as owners of last
resort, and they are not application engineers




Getting unstuck

e Another external engineer joins the effort

e Doesn’t know anything about the specific
service but has done a lot of Java
performance work

e Thinks that DB slowness is unlikely to cause
an application to totally lock up this way

e Advises to get Java thread dumps next time
the application freezes




Getting unstuck

DevOps engineer reads thread dump
and is confused - thinks it shows the
application has run out of threads, due to
lack of awareness of connection pooling
External engineer reads it and interprets
it as application running out of DB
connections due to connection pool
configuration

Lines up with DB connection data
Increasing the connection pool count
fixes the problem immediately




Five months later

Five months and 3 days

Five months and 4 days
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What can we learn from this case?

e Expertise seems to matter. sometimes an expert can unravel a case rapidly
that has stumped others for a long period of time

e |[tis easyto spend a lot of time on red herrings

e Troubleshooting cases can involve a lot of uncertainty about where the
problems are

e Experience can help to highlight where problems are most likely to be

e You often have to actively seek out data you need, it may not be available in
your logs and metrics

e TJo interpret the data effectively you need to have a mental model of the
system

e You only know for sure you are right when the problem is fixed
o BUT: when all the data is explained and all the dots are connected, it’s a strong sign



Why is troubleshooting in digital systems
challenging?




Intransparency

e We can’t observe internals of digital systems directly

e We rely on what logging, metrics, tracing are there
o If we control the build then we can add more, but that takes time
e We can do profiling and packet tracing and other forms of introspection
But sometimes access can be tricky
May need to enable debug ports etc
Sometimes healthchecks can cause the broken instance you are trying to introspect to be killed
Lots of friction generally

e Understanding what we are seeing can often require system knowledge that
we may not have

o O O O



Logs are a double-edged sword

The industry still relies very heavily on logs

Most accessible form of observability: anyone can read lines of text

Works great for many cases, too

But logs are a poor fit for understanding performance problems

Log levels can cause issues as well - information hiding

Log volume can be overwhelming

Logs are messy and noisy and lots of things in there may also be red herrings
Not everything we care about may be in the logs



Management pointing in the wrong direction

e In some incidents | see management directing engineers to investigate

particular avenues

e This can waste a lot of time if those are the wrong directions

e But engineers feel obliged to do that work, even when they don’t think the
direction is the most likely cause of the issue



Uncertainty

e By its nature, troubleshooting involves a lot of uncertainty
o Whatis the problem
o How much impact is there
o When will it be resolved
o How much work will it take to resolve it

e Nobody likes uncertainty
e But effective troubleshooting requires tolerating uncertainty, and keeping an

open mind towards alternative possibilities
o Potential causes of observed behaviours

o Potential ways of confirming or disconfirming different hypotheses
o Potential effects of any actions that we take



You don't know what you don't know

e Many long-running incidents or problems involve elements of the system that

we don’t even know are there
o Inthis case, the DB connection pool
e This is related to intransparency - we don’t know about these things because

we can’t see them... until they break



Configuration is a pain point

e Configuration issues appear quite often in troubleshooting
e Major factor in 6 of my 14 difficult research cases



Configuration is intransparent

e Configuration often affects things in ways that are difficult to observe, as they

aren’t in the direct path of execution - again, intransparency
o Think of things like concurrency and preemption related config, networking config
o  Configuration issues are rarely solvable with logs



Configuration ownership and visihility

e Config is often ‘off to the side’, especially OS or application config

o Rarely modified or considered
o Often not really ‘owned’ by either dev or ops



Configuration defaults

When the defaults ‘just work’ for a long time, we get a surprise when they don’t
Default configs make discovery harder

Config documentation often isn’t great

Good practice: add a /config endpoint to your binaries to show running configs
(not including secrets)



DevOps team are not always best placed

e Teams with titles like DevOps and SRE are often tasked with troubleshooting
as the default owner of whatever is broken
e The implicit assumption is that people with these job titles are always good at

troubleshooting
o This was more true ten years ago when these job titles were usually held by people who had
been sysadmins for their university internet societies in the early noughties
o Now, many people come to the profession as cloud admins or CI/CD specialist, and it is a
different skillset
o Software engineers aren’t necessarily good at troubleshooting either, particularly if the problem
isn’t in their code

e Many organisations seem to have a few go-to troubleshooters; senior people
who have seen a lot and are comfortable with chasing issues across system
boundaries



Determining causality

e The observability tools that we have tend to be geared towards showing us
the state of the system

e Figuring out how the system got into that state may require more detective
work

e Going from ‘what’ to how often requires engineers to synthesize observations
with what they know about how systems work - which is hard!
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Limits on mental
simulation

e Around three ‘moving parts’

e Maximum of six steps

e But experts can cheat using
‘chunking’




Experts process
information
differently




Klein's Data EFrame Theory of Sensemaking

Sensemaking is an active process of understanding a situation. It is:

The account we generate to explain events

How we elaborate that account of events

Questioning our current account of events when we find inconsistent data
Fixation on an account

Comparing alternative accounts of events



What is a Data Frame?

Think of them as stories, maps, plans.

Frames relate elements to other elements. They
structure the data we have about a situation, and
they guide the search for more information.

They are normally ‘anchored’ on a small set of
important data.




Experts have a richer set of frames
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Sensemaking uses ahductive reasoning

D is a collection of data (facts, observations, and givens),
H explains D (would, if true, explain D).

Nao other hypothesis can explain D as well as H does.
Therefore, H is probably true.



Just-in-time mental models

e We need mental models to make sense of things
May be comprehensive, or ‘just-in-time’

e Difficult troubleshooting cases usually involve some element of building
just-in-time models on the fly

e The better the mental model you have to start with, the easier this is
o This can involve understanding transferred from other, similar systems
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Erame Theory: Implications

e There is no generic sensemaking skill - it is always situated in a given domain
of expertise

e Noticing anomalies is really important - unexpected data is what lets us
improve or replace frames that aren’t working

e Having a rich set of frames is critically important

e Having comprehensive mental models of systems is probably less important
than having a partial model plus the ability to expand that model via
introspection of the system
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reveal the causal
mechanism.



Maladaptive diagnostic modes
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Adaptive problem solving mode
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How to troubleshoot the worst issue of your
career

e You may need to build some new just-in-time mental models

e You may need to look beyond logs and metrics

e You may be dealing with parts of the system you don’t even know exist, or
configuration options you’ve never heard of

e Treatit as a search for answers, rather than needing to come up with
hypotheses from limited data



How to troubleshoot the worst issue of your
career

e Allissues are troubleshootable
e [t may take time and persistence
e |t may take asking for help, reading docs, or learning new introspection tools



When you get to the other side you will have
a richer set of frames.
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