REQUISIT=

VARIETY

The Worst Issue You
Ever Dealt With

Laura Nolan
laura@requisitevariety.net

About Laura Nolan

e | keep bees (which are complex systems!) *q!l
e Contributor to Site Reliability Engineering: How ‘
Google Runs Production Systems (‘the SRE
book’), Seeking SRE, 97 Things Every SRE Should E
Know, InfoQ, USENIX ;login:
e Currently working independently and almost
finished my MSc in Human Factors and Systems
Safety at Lund University
e |aura@requisitevariety.net REQUisITE

e
s

VARI=TY

Ehe New Aork Times

Slack Restores Service After Starting
2021 With Outage

The company apologized for the disruptions, which lasted for a
few hours as users returned to work after the holidays.

O Sharefullarticle A [] CJ 19

Slack’s Outage
on January 4th
Blog post: bit.ly/ny-outage 202]

Slack’s Outage on January 4th 2021
i Laura Nolan

2021

loading...

Incidents:
e Pressure to fix ASAP
e Usually lots of people
collaborating
e No distractions
e Mitigations can often get us

back on the air, no need to
understand causal
mechanism

Issues:

e Time pressure is less

e Usually a smaller team or
individual responsible for
investigating

e Lots of distractions

e Understanding causal
mechanism is critical to
fixing or preventing
recurrence

Troubleshooting versus Debugging

7

Troubleshooting Scenarios

Something is broken or misbehaving

Something is slow

Something is intermittently broken

Something is intermittently slow

Some subset of requests (or other work) are slow
or broken

Unexplained high resource usage

Some kind of other unexplained behaviour

A troubleshooting story

e Small organisation, with a two-person
DevOps team and several devs

e Software in Java and JS, running on a cloud
provider

e Customers start to notice performance
problems and report that the APl seems to
be browning out regularly

A troubleshooting story: DevOps investigate

e At this point the DevOps team are assigned
to deal with the issue

e They check some consoles and find that
the API service has been going unhealthy
and being restarted after failing
healthchecks, most days around peak time

e This has started a couple of months
previously and was ongoing

A troubleshooting
story: it must bhe
the DB!

e Service doesn’t have much in the way of
metrics or tracing, none of these fancy
newfangled observability technologies
It has logs

e The logs don’t show anything interesting
though

e But the only dependency this service has is
the DB, so it must be slow DB, surely?

A troubleshooting story: DB red
herring

There was already a lot of concern around the DB in
the org, so it was top of mind to improve DB
performance

DB consultant hired to optimise queries and indexes
DB instances upscaled

... and no improvement at all

DB metrics all look very quiet, no evidence of DB
performance problems there

A troubleshooting story: another red herring

e Since the DB story has not proven fruitful, the next thing
was to look at any changes that happened around time
problem manifested

e Turns out around this time the app was moved from
running directly on VM to a container service
Maybe this is the problem! (although nobody sees how)
But after 3 months, it is hard to revert back
Should we invest the work in reverting, or work more on
the DB query optimisation, or work on adding more
observability, or something else?

This team was stuck

e They do not know how to move forward
effectively

e They have some theories about possible causes,
but not really any good evidence for any of them

e All they really know at this point is that their API
service is freezing periodically and being
restarted, and that this is causing customer pain

e Issue is owned by DevOps as owners of last
resort, and they are not application engineers

Getting unstuck

e Another external engineer joins the effort

e Doesn’t know anything about the specific
service but has done a lot of Java
performance work

e Thinks that DB slowness is unlikely to cause
an application to totally lock up this way

e Advises to get Java thread dumps next time
the application freezes

Getting unstuck

DevOps engineer reads thread dump
and is confused - thinks it shows the
application has run out of threads, due to
lack of awareness of connection pooling
External engineer reads it and interprets
it as application running out of DB
connections due to connection pool
configuration

Lines up with DB connection data
Increasing the connection pool count
fixes the problem immediately

Five months later

Five months and 3 days

Five months and 4 days

Timgiihe Start of case Four months later later ater
(approximate)
. " External engineer points out New frame: external ~ Frame is elaborated: Confirmation/joining the
. . - Anomalous observation - it
Frame: In this Anchoring data: the that load balancers have engineer has seen the application is dots: DB load and Final confirmation

DB does not appear

DB is the only
overloaded

organisation, the
external dependency

DB was widely

built-in monitoring which will
enable the engineers to

applications freeze for
reasons other than

freezing because too
many threads are

inbound connections
are low because they

occurs when the
crashes stop.

Frames considered to be used bw':e tAFI" Anomalous observation - if observe the performance dependencies. waiting for DB are limited by DB
slow and a source of service. What else DB performance issue, problems (not rely on connections connection pool size.
performance issues could be causing upscale should help customers reports)
slowness?
How does this
There are (actually affect the BB mattics show
icallock some queries thary application? DevOps team member a low number of 3
seem slow mentions to external inbound connections, Increase Dli!l_c o_r:nectlon
T engineer that the API app (el
is freezing because of
slow DB query
| Performance
DB metrics 2ES O‘:" e, does not
analysis improve
Load balancer | | Orchestration i bn st A
metrics service logs pplinsAncesiale
waiting for DB he i fixed?
™| connections from pool, Is the issue fixed?
Sequence Major customer Freezing might b_e which is undersized
of Events : P Upscale caused by something e
complains APl is
Siowand database else (not DB)
unresponsive
Investigation
cah Stuck AP service is bein
Application g
p'}o 5 These look restarted near the time
9 normal g
the performance issues
Seen Application)
What is the frozen app configuration: DB
Don't know how to doing? Get a thread connection pool size is App stops crashing
access application dump. default, unchanged in under peak load
latency metrics: relying Reason for restart is that the < years
Oon user reports. application is ‘freezing' and failing Difficult to catch
health checks the freezing 'in the
act'.
<:7 Getting help :>
Mode; < Fixated >
ér:oad search for anomali§ <irected search / broad hypothe"s>< Directed search / specific hypothesis >
Cue or Data being Event or Insight or new Uncertainty Investigation
Key Observation sought Action intepretation of data or friction Stuck

What can we learn from this case?

e Expertise seems to matter. sometimes an expert can unravel a case rapidly
that has stumped others for a long period of time

e |[tis easyto spend a lot of time on red herrings

e Troubleshooting cases can involve a lot of uncertainty about where the
problems are

e Experience can help to highlight where problems are most likely to be

e You often have to actively seek out data you need, it may not be available in
your logs and metrics

e TJo interpret the data effectively you need to have a mental model of the
system

e You only know for sure you are right when the problem is fixed
o BUT: when all the data is explained and all the dots are connected, it’s a strong sign

Why is troubleshooting in digital systems
challenging?

Intransparency

e We can’t observe internals of digital systems directly

e We rely on what logging, metrics, tracing are there
o If we control the build then we can add more, but that takes time
e We can do profiling and packet tracing and other forms of introspection
But sometimes access can be tricky
May need to enable debug ports etc
Sometimes healthchecks can cause the broken instance you are trying to introspect to be killed
Lots of friction generally

e Understanding what we are seeing can often require system knowledge that
we may not have

o O O O

Logs are a double-edged sword

The industry still relies very heavily on logs

Most accessible form of observability: anyone can read lines of text

Works great for many cases, too

But logs are a poor fit for understanding performance problems

Log levels can cause issues as well - information hiding

Log volume can be overwhelming

Logs are messy and noisy and lots of things in there may also be red herrings
Not everything we care about may be in the logs

Management pointing in the wrong direction

e In some incidents | see management directing engineers to investigate

particular avenues

e This can waste a lot of time if those are the wrong directions

e But engineers feel obliged to do that work, even when they don’t think the
direction is the most likely cause of the issue

Uncertainty

e By its nature, troubleshooting involves a lot of uncertainty
o Whatis the problem
o How much impact is there
o When will it be resolved
o How much work will it take to resolve it

e Nobody likes uncertainty
e But effective troubleshooting requires tolerating uncertainty, and keeping an

open mind towards alternative possibilities
o Potential causes of observed behaviours

o Potential ways of confirming or disconfirming different hypotheses
o Potential effects of any actions that we take

You don't know what you don't know

e Many long-running incidents or problems involve elements of the system that

we don’t even know are there
o Inthis case, the DB connection pool
e This is related to intransparency - we don’t know about these things because

we can’t see them... until they break

Configuration is a pain point

e Configuration issues appear quite often in troubleshooting
e Major factor in 6 of my 14 difficult research cases

Configuration is intransparent

e Configuration often affects things in ways that are difficult to observe, as they

aren’t in the direct path of execution - again, intransparency
o Think of things like concurrency and preemption related config, networking config
o Configuration issues are rarely solvable with logs

Configuration ownership and visihility

e Config is often ‘off to the side’, especially OS or application config

o Rarely modified or considered
o Often not really ‘owned’ by either dev or ops

Configuration defaults

When the defaults ‘just work’ for a long time, we get a surprise when they don’t
Default configs make discovery harder

Config documentation often isn’t great

Good practice: add a /config endpoint to your binaries to show running configs
(not including secrets)

DevOps team are not always best placed

e Teams with titles like DevOps and SRE are often tasked with troubleshooting
as the default owner of whatever is broken
e The implicit assumption is that people with these job titles are always good at

troubleshooting
o This was more true ten years ago when these job titles were usually held by people who had
been sysadmins for their university internet societies in the early noughties
o Now, many people come to the profession as cloud admins or CI/CD specialist, and it is a
different skillset
o Software engineers aren’t necessarily good at troubleshooting either, particularly if the problem
isn’t in their code

e Many organisations seem to have a few go-to troubleshooters; senior people
who have seen a lot and are comfortable with chasing issues across system
boundaries

Determining causality

e The observability tools that we have tend to be geared towards showing us
the state of the system

e Figuring out how the system got into that state may require more detective
work

e Going from ‘what’ to how often requires engineers to synthesize observations
with what they know about how systems work - which is hard!

sl
.

~

What“does the research say about (weu
troubleshooting? | | ey
A ';D =

9 14 =l

1 | 154 4

|
3
i

GCALS

KNOWLEDGE - BASED J
BE HAVIOUR
YMBOLS NTI- DECISION
S - 0¢ -—ﬁﬂ QF s PLANNING }
FICATION TASK
RULE - BASED
BE MAVIOUR I
— o0 ASSOCIa - SIORED
RECOG - TION RULES
"1 ramon ™ srare / "1 FOR I
TASK TASKS
SKILL - BASED ‘
SEnavIOUR FEATURE ISIGNS) AUTOMATED
o SENSORI-MOTOR
PORMARION PATTERNS

[111 T

SENSORY INPUT SIGNALS ACTIONS

SKILL - BASED l l
EMAVIOUR —
8 O R ISIGNS) AUTOMATED
. SENSOR! - MOTOR
FORMATION PATTERNS

AN AR

SENSORY INPUT SIGNALS ACTIONS

T S W— —— — — ——

W — T — —— —— —— " ——————— — ————

SIGNS RECOG | e iy
. TION Lo RULES
NITION SI“E/ FOR
TASK TASKS

GOALS
KNOWLE OGE - BASED l

BEHAVIOUR
SYMBOLS NTI - DECISION
o € - OF PLANNING

FICATION TASK

T W W — W Wi F W —— W W——_ — —— — W U———— —W————— ————.—] — ———

Seek More
Information

Reassess
Situation

Are
Expectancies
Violated?

—)(Experience the Situation in a Changing Context)

No
_ |StheSituatiOn EEEEENEEEENENNg

Yes

Recognition has four aspects
Plausible Relevant
Goals Cues

...N

\ 4

Mental Simulation
of Action (n)

Yes, but

Yes

Implement

Modify

'

Mental Simulation
of Action (n)

Yes, but l

S(M|| it Work?

Implement

No

Limits on mental
simulation

e Around three ‘moving parts’

e Maximum of six steps

e But experts can cheat using
‘chunking’

Experts process
information
differently

Klein's Data EFrame Theory of Sensemaking

Sensemaking is an active process of understanding a situation. It is:

The account we generate to explain events

How we elaborate that account of events

Questioning our current account of events when we find inconsistent data
Fixation on an account

Comparing alternative accounts of events

What is a Data Frame?

Think of them as stories, maps, plans.

Frames relate elements to other elements. They
structure the data we have about a situation, and
they guide the search for more information.

They are normally ‘anchored’ on a small set of
important data.

Experts have a richer set of frames

]
L}
L
[
L]
L]
L
L]
Ll
a
L}
1
|
1

o o | o | | | | |
-

Vo o | | (| | e e

| AT

Story or map defining
elements of a situation.

anchored by

May include gaps, Data Frame

uncertainty, and open
questions.

guides updating of

<
-

guides gathering of

Mental model of
how the system

works @
@@

Mental

Simulation

Predictions
»| about system
behaviour

Sensemaking uses ahductive reasoning

D is a collection of data (facts, observations, and givens),
H explains D (would, if true, explain D).

Nao other hypothesis can explain D as well as H does.
Therefore, H is probably true.

Just-in-time mental models

e We need mental models to make sense of things
May be comprehensive, or ‘just-in-time’

e Difficult troubleshooting cases usually involve some element of building
just-in-time models on the fly

e The better the mental model you have to start with, the easier this is
o This can involve understanding transferred from other, similar systems

DATA @

Jjust-in-time
mental models

® FRAME

recognize/construct define, connect, and
\ aframe . ﬂhotdndln/

ELABORATING THE FRAME

seeking dats sy extending the frame
inferring data O8R® ,44ing & filling slots

QUESTIONING THE FRAME
Inconsistent data Te violated

RE-FRAMING
establishing new anchors
mrﬁmupndng data

FIG. 6.1.

revising
scarded data goals

PRESERVING THE FRAME

explain away or &% fixation
distort data errors

SEEKING A FRAME

l“"d'ﬁ m‘:' bullding on FMMs
finding anchors @ [OLTIINe 8

COMPARING FRAMES
s @y &
eating

Sensemaking activities.

Erame Theory: Implications

e There is no generic sensemaking skill - it is always situated in a given domain
of expertise

e Noticing anomalies is really important - unexpected data is what lets us
improve or replace frames that aren’t working

e Having a rich set of frames is critically important

e Having comprehensive mental models of systems is probably less important
than having a partial model plus the ability to expand that model via
introspection of the system

If no clear area

Alert or

of inquiry based !

]

Problem Report

Broad scan
through logs

on initial
data frame

sources

and other data

! Data scan
reveals an area
o - of inquiry Other
; Initial Data Frame possible
“ areas of

\
Broad
» area of

inquiry

If clear areas of
inquiry arises

Existing @ Previous based on initial
knowledge of experiences data frame ,
the system 2 Seeking

further
data

inquiry

There may be several
possible areas of
inquiry. Troubleshooters
might divide up work,
might try to quickly rule
out parts of the search
space, or may just first
investigate the area they
believe is most likely to
reveal the causal
mechanism.

Maladaptive diagnostic modes

Stalled

Fixated

Troubleshooting

Process

Troubleshooting
Process

coce

perescscsvcecd

¥

Causal
Model of the
Is]sue,

Area of

= Inquiry 1

Causal
Model of the
Issue,

Area of

Inquiry 2 cecsee gl

Aol Not
Investigated

Thematic
Vagabonding

roubleshooting

Process

Troubleshooting

Process

Aol Not
Investigated
Fully

@eseesesessscssssescssssoses

Aol Not
Investigated
ully
Area of
e Inquiry 1
Data not
obtainable

Causal
Model of the

Area of
Inquiry 2

v
.
pescccscecsced

Key
,i:
Focus of
troubleshooting
activity

Direction of
investigation that
has been
explored

—

Direction of
investigation that
has not been
explored fully

sesescece

Adaptive problem solving mode

Adaptive Problem
Solving

Troubleshooting
Process

Investigated
and
ruled out

Area of
Inquiry 1

'......."...‘..C.'.‘....“.

Causal
Model of the
Issue,

Area of
Inquiry 2

Aol Not
Investigated

Area of
Inquiry 3

Key
Focus of
troubleshooting
activity

Direction of
investigation that
has been
explored

—

Direction of
investigation that
has not been
explored fully

How to troubleshoot the worst issue of your
career

e You may need to build some new just-in-time mental models

e You may need to look beyond logs and metrics

e You may be dealing with parts of the system you don’t even know exist, or
configuration options you’ve never heard of

e Treatit as a search for answers, rather than needing to come up with
hypotheses from limited data

How to troubleshoot the worst issue of your
career

e Allissues are troubleshootable
e [t may take time and persistence
e |t may take asking for help, reading docs, or learning new introspection tools

When you get to the other side you will have
a richer set of frames.

F

(e o

- | |0 o 2

ot o | o o

|

[
€
[l
g
[
[
€
L
[
L]
L]
L]
L]
[
[
[
[
[
1

[
[
[
)
!
|
|
[
|
I
I
[
[
I
I
[
;

| [([

| |

Jomom o o omom o | o o [o

—w |

[

Sources used in this talk

Jens Rasmussen. Skills, rules, knowledge; signals, si%ns, and symbols, and other distinctions in human performance models, IEEE
Transactions on Systems, Man, and Cybernetics (1983).

Gary Klein. Sources of Power: How People Make Decisions (1999). MIT Press.
Gary Klein. Streetlights and Shadows: Searching for the Keys to Adaptive Decision Making. MIT Press.

John Allspaw. Trade-offs under pressure: Heuristics and observations of teams resolving internet service outages (Master’s thesis,
2015). Lund University.

John Flach et al. Decisionmaking in Practice: The dynamics of muddling through, Applied Ergonomics (2017).
Dorner, Dietrich. The Logic of Failure, Basic Books, 1997.

Gary Klein, J.K. Phillips, E.L. Rall, Deborah A. Peluso. A data-frame theory of sensemaking. In R. R. Hoffman (Ed.), Expertise out of
Zontext:tProFt):ete)ldiﬂgs of the Sixth International Conference on Naturalistic Decision Making (pp. 113—155). Lawrence Erlbaum
ssociates Publishers.

Rudolph, J., Morrison, J., & Carroll, J.£2009 . The Dynamics of Action-Oriented Problem Solving: Linking Interpretation and Choice,
Academy of Management Review 34(4), 733-756.

Contact me: laura@requisitevariety.net | https://requisitevariety.net (slides available here)

