
The Worst Issue You
Ever Dealt With

Laura Nolan
laura@requisitevariety.net

● I keep bees (which are complex systems!)
● Contributor to Site Reliability Engineering: How

Google Runs Production Systems (‘the SRE
book’), Seeking SRE, 97 Things Every SRE Should
Know, InfoQ, USENIX ;login:

● Currently working independently and almost
finished my MSc in Human Factors and Systems
Safety at Lund University

● laura@requisitevariety.net

About Laura Nolan

Blog post: bit.ly/ny-outage

Incidents and Issues
Incidents:

● Pressure to fix ASAP
● Usually lots of people

collaborating
● No distractions
● Mitigations can often get us

back on the air, no need to
understand causal
mechanism

Issues:

● Time pressure is less
● Usually a smaller team or

individual responsible for
investigating

● Lots of distractions
● Understanding causal

mechanism is critical to
fixing or preventing
recurrence

Troubleshooting versus Debugging

Troubleshooting Scenarios
● Something is broken or misbehaving
● Something is slow
● Something is intermittently broken
● Something is intermittently slow
● Some subset of requests (or other work) are slow

or broken
● Unexplained high resource usage
● Some kind of other unexplained behaviour

A troubleshooting story
● Small organisation, with a two-person

DevOps team and several devs
● Software in Java and JS, running on a cloud

provider
● Customers start to notice performance

problems and report that the API seems to
be browning out regularly

A troubleshooting story: DevOps investigate
● At this point the DevOps team are assigned

to deal with the issue
● They check some consoles and find that

the API service has been going unhealthy
and being restarted after failing
healthchecks, most days around peak time

● This has started a couple of months
previously and was ongoing

A troubleshooting
story: it must be
the DB!
● Service doesn’t have much in the way of

metrics or tracing, none of these fancy
newfangled observability technologies

● It has logs
● The logs don’t show anything interesting

though
● But the only dependency this service has is

the DB, so it must be slow DB, surely?

A troubleshooting story: DB red
herring
● There was already a lot of concern around the DB in

the org, so it was top of mind to improve DB
performance

● DB consultant hired to optimise queries and indexes
● DB instances upscaled
● … and no improvement at all
● DB metrics all look very quiet, no evidence of DB

performance problems there

A troubleshooting story: another red herring
● Since the DB story has not proven fruitful, the next thing

was to look at any changes that happened around time
problem manifested

● Turns out around this time the app was moved from
running directly on VM to a container service

● Maybe this is the problem! (although nobody sees how)
● But after 3 months, it is hard to revert back
● Should we invest the work in reverting, or work more on

the DB query optimisation, or work on adding more
observability, or something else?

This team was stuck
● They do not know how to move forward

effectively
● They have some theories about possible causes,

but not really any good evidence for any of them
● All they really know at this point is that their API

service is freezing periodically and being
restarted, and that this is causing customer pain

● Issue is owned by DevOps as owners of last
resort, and they are not application engineers

Getting unstuck
● Another external engineer joins the effort
● Doesn’t know anything about the specific

service but has done a lot of Java
performance work

● Thinks that DB slowness is unlikely to cause
an application to totally lock up this way

● Advises to get Java thread dumps next time
the application freezes

Getting unstuck
● DevOps engineer reads thread dump

and is confused - thinks it shows the
application has run out of threads, due to
lack of awareness of connection pooling

● External engineer reads it and interprets
it as application running out of DB
connections due to connection pool
configuration

● Lines up with DB connection data
● Increasing the connection pool count

fixes the problem immediately

What can we learn from this case?
● Expertise seems to matter: sometimes an expert can unravel a case rapidly

that has stumped others for a long period of time
● It is easy to spend a lot of time on red herrings
● Troubleshooting cases can involve a lot of uncertainty about where the

problems are
● Experience can help to highlight where problems are most likely to be
● You often have to actively seek out data you need, it may not be available in

your logs and metrics
● To interpret the data effectively you need to have a mental model of the

system
● You only know for sure you are right when the problem is fixed

○ BUT: when all the data is explained and all the dots are connected, it’s a strong sign

Why is troubleshooting in digital systems
challenging?

Intransparency
● We can’t observe internals of digital systems directly
● We rely on what logging, metrics, tracing are there

○ If we control the build then we can add more, but that takes time

● We can do profiling and packet tracing and other forms of introspection
○ But sometimes access can be tricky
○ May need to enable debug ports etc
○ Sometimes healthchecks can cause the broken instance you are trying to introspect to be killed
○ Lots of friction generally

● Understanding what we are seeing can often require system knowledge that
we may not have

Logs are a double-edged sword
● The industry still relies very heavily on logs
● Most accessible form of observability: anyone can read lines of text
● Works great for many cases, too
● But logs are a poor fit for understanding performance problems
● Log levels can cause issues as well - information hiding
● Log volume can be overwhelming
● Logs are messy and noisy and lots of things in there may also be red herrings
● Not everything we care about may be in the logs

Management pointing in the wrong direction
● In some incidents I see management directing engineers to investigate

particular avenues
● This can waste a lot of time if those are the wrong directions
● But engineers feel obliged to do that work, even when they don’t think the

direction is the most likely cause of the issue

Uncertainty
● By its nature, troubleshooting involves a lot of uncertainty

○ What is the problem
○ How much impact is there
○ When will it be resolved
○ How much work will it take to resolve it

● Nobody likes uncertainty
● But effective troubleshooting requires tolerating uncertainty, and keeping an

open mind towards alternative possibilities
○ Potential causes of observed behaviours
○ Potential ways of confirming or disconfirming different hypotheses
○ Potential effects of any actions that we take

You don’t know what you don’t know
● Many long-running incidents or problems involve elements of the system that

we don’t even know are there
○ In this case, the DB connection pool

● This is related to intransparency - we don’t know about these things because
we can’t see them… until they break

Configuration is a pain point
● Configuration issues appear quite often in troubleshooting
● Major factor in 6 of my 14 difficult research cases

Configuration is intransparent
● Configuration often affects things in ways that are difficult to observe, as they

aren’t in the direct path of execution - again, intransparency
○ Think of things like concurrency and preemption related config, networking config
○ Configuration issues are rarely solvable with logs

Configuration ownership and visibility
● Config is often ‘off to the side’, especially OS or application config

○ Rarely modified or considered
○ Often not really ‘owned’ by either dev or ops

Configuration defaults
● When the defaults ‘just work’ for a long time, we get a surprise when they don’t
● Default configs make discovery harder
● Config documentation often isn’t great
● Good practice: add a /config endpoint to your binaries to show running configs

(not including secrets)

DevOps team are not always best placed
● Teams with titles like DevOps and SRE are often tasked with troubleshooting

as the default owner of whatever is broken
● The implicit assumption is that people with these job titles are always good at

troubleshooting
○ This was more true ten years ago when these job titles were usually held by people who had

been sysadmins for their university internet societies in the early noughties
○ Now, many people come to the profession as cloud admins or CI/CD specialist, and it is a

different skillset
○ Software engineers aren’t necessarily good at troubleshooting either, particularly if the problem

isn’t in their code
● Many organisations seem to have a few go-to troubleshooters; senior people

who have seen a lot and are comfortable with chasing issues across system
boundaries

Determining causality
● The observability tools that we have tend to be geared towards showing us

the state of the system
● Figuring out how the system got into that state may require more detective

work
● Going from ‘what’ to how often requires engineers to synthesize observations

with what they know about how systems work - which is hard!

What does the research say about
troubleshooting?

Skill

Rules

Knowledge

RPDM and Klein 3

Mental
Simulation

Limits on mental
simulation

● Around three ‘moving parts’
● Maximum of six steps
● But experts can cheat using

‘chunking’

Experts process
information
differently

Klein’s Data Frame Theory of Sensemaking
Sensemaking is an active process of understanding a situation. It is:

● The account we generate to explain events
● How we elaborate that account of events
● Questioning our current account of events when we find inconsistent data
● Fixation on an account
● Comparing alternative accounts of events

What is a Data Frame?
Think of them as stories, maps, plans.

Frames relate elements to other elements. They
structure the data we have about a situation, and
they guide the search for more information.

They are normally ‘anchored’ on a small set of
important data.

Experts have a richer set of frames

Sensemaking often involves using multiple
frames at once

Sensemaking uses abductive reasoning

Just-in-time mental models
● We need mental models to make sense of things
● May be comprehensive, or ‘just-in-time’
● Difficult troubleshooting cases usually involve some element of building

just-in-time models on the fly
● The better the mental model you have to start with, the easier this is

○ This can involve understanding transferred from other, similar systems

Frame Theory: Implications
● There is no generic sensemaking skill - it is always situated in a given domain

of expertise
● Noticing anomalies is really important - unexpected data is what lets us

improve or replace frames that aren’t working
● Having a rich set of frames is critically important
● Having comprehensive mental models of systems is probably less important

than having a partial model plus the ability to expand that model via
introspection of the system

Maladaptive diagnostic modes

Adaptive problem solving mode

How to troubleshoot the worst issue of your
career
● You may need to build some new just-in-time mental models
● You may need to look beyond logs and metrics
● You may be dealing with parts of the system you don’t even know exist, or

configuration options you’ve never heard of
● Treat it as a search for answers, rather than needing to come up with

hypotheses from limited data

How to troubleshoot the worst issue of your
career
● All issues are troubleshootable
● It may take time and persistence
● It may take asking for help, reading docs, or learning new introspection tools

When you get to the other side you will have
a richer set of frames.

Jens Rasmussen. Skills, rules, knowledge; signals, signs, and symbols, and other distinctions in human performance models, IEEE
Transactions on Systems, Man, and Cybernetics (1983).

Gary Klein. Sources of Power: How People Make Decisions (1999). MIT Press.

Gary Klein. Streetlights and Shadows: Searching for the Keys to Adaptive Decision Making. MIT Press.

John Allspaw. Trade-offs under pressure: Heuristics and observations of teams resolving internet service outages (Master’s thesis,
2015). Lund University.

John Flach et al. Decisionmaking in Practice: The dynamics of muddling through, Applied Ergonomics (2017).

Dorner, Dietrich. The Logic of Failure, Basic Books, 1997.

Gary Klein, J.K. Phillips, E.L. Rall, Deborah A. Peluso. A data-frame theory of sensemaking. In R. R. Hoffman (Ed.), Expertise out of
context: Proceedings of the Sixth International Conference on Naturalistic Decision Making (pp. 113–155). Lawrence Erlbaum
Associates Publishers.

Rudolph, J., Morrison, J., & Carroll, J. (2009). The Dynamics of Action-Oriented Problem Solving: Linking Interpretation and Choice,
Academy of Management Review 34(4), 733-756.

Contact me: laura@requisitevariety.net | https://requisitevariety.net (slides available here)

Sources used in this talk

